

2022 CONSUMER CONFIDENCE REPORT

PREPARED FOR:

SAN PASQUAL DOMESTIC WATER AUTHORITY SUBSCRIBERS

Contact Us

Valley Center, CA, 92082

Phone: 760-651-5141

Environmental Director: John Flores johnf@sanpasqualtribe.org

www.sanpasqualbandofmissionindians.org

DOMESTIC WATER AUTHORITY

Reporting Period: [JANUARY 1 2021--DECEMBER 31 2022]

01: Introduction -Page 3

Message from DWA
-Page 4

02: Tribal Water -Page 5

03: Special Precautions -Page 6

04: Water Sources -Page 7

Drought Insights -Page 8

05: Outsourced Water CCRs -Page 9

06: Contaminants in water?

-Page 10

07: Our Treatment -Page 10

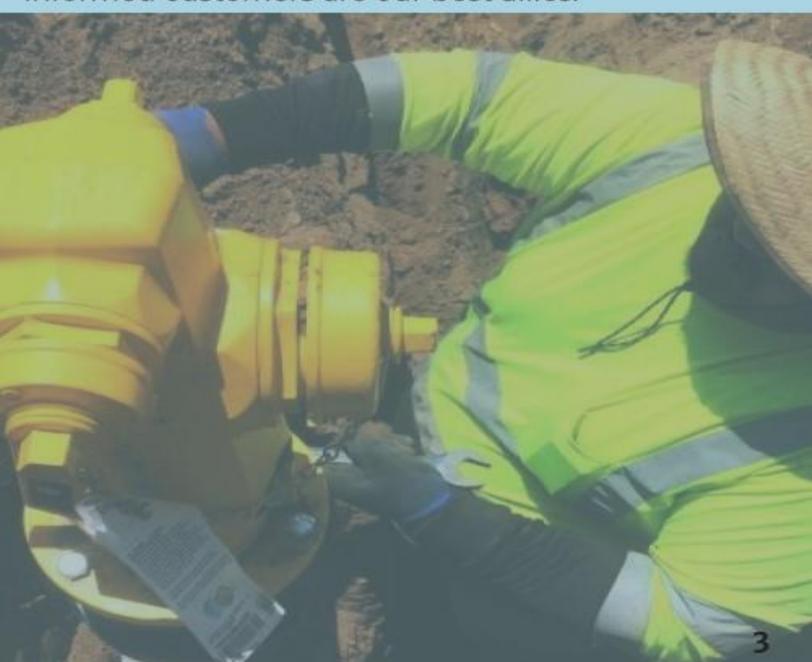
08: Water Quality Tables -Pages 11-15

09: Special Statements

-Page 16

10: Microbiological Testing -Page 16

11: Health Based Violations -Page 17


12: Your Involvement -Page 17

13: Definitions
-Page 18
How YOU can Save
-Page 19

01: Introduction

We are pleased to present you with the 2022 Annual Drinking Water Quality Report; also known as the Consumer Confidence Report (CCR). This report is a snapshot of your water quality.

Included are details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. We are committed to providing you this information as informed customers are our best allies.

A MESSAGE FROM THE SAN PASQUAL BAND OF MISSION INDIANS DOMESTIC WATER AUTHORIT

San Pasqual Environmental Department is delighted to share that our Domestic Water Authority continues to provide affordable drinking water to you each and every day. While we are extremely confident about the quality of water delivered to your home, it is becoming a limited resource as our climate continues to change (see pg.5 for current drought status and maps). As a community we must rethink how we use our water; we have to challenge ourselves to adapt to this new reality. Water is integral to maintaining San Pasqual's way of life, and we must consider ways to conserve our supply. Together we must value water, consume it wisely, and never waste it. We are confident this report will shed some light on just how much effort is involved to deliver this precious resource. Sincerely,

SAN PASQUAL DOMESTIC WATER AUTHORITY

02: Tribal Drinking Water

There are two primary sources for our Tribal drinking water; the first being groundwater, and the second is outsourced water from the San Luis Rey Indian Water Authority (IWA). Groundwater begins as rainwater which is then naturally filtered through the soil and settles to form aquifers. The reservation also uses chlorinated+fluoridated water purchased from the IWA for both tribal water systems A & B. These added chemicals help suppress viruses and bacteria, making the supply potable for drinking, cooking, and washing. The levels of chemicals are also closely monitored to ensure safety.

what is a PWS ID? Public Water System Identification

A public water system provides water for human consumption through pipes to at least 15 service connections or serves an average of at least 25 people.

PWS ID 090605017

Oos Rd., Paradise MTN Rd., Ipaii, Ashaa, Eagle Way SOURCE: IWA & Groundwater (Well)

PWS ID 090605080

DISTRICT B: Kumeyaay Way, Nyemii Pass, Kunyaaw Path, Morning Star, Kunyaaw Court, South San Pasqual SOURCE: IWA

PWS ID 090605168

DURO SYSTEM: (District C)
Duro Rd., 1 Ground Water
Source
SOURCE: Groundwater
(Well)

03: Special Precautions

While we deliver a perfectly safe supply of water, some people may be more vulnerable to contaminants than others.

Immunocompromised individuals, those who have undergone an organ transplant, people with immune system disorders, and some elderly or infants can be particularly at risk from infections. These individuals should consider purchasing personal water filters, and should seek medical advice on safe drinking methods. Means to decrease risk of infection from contaminants are available on the **EPA safe drinking Hotline**:

+1(800)-426-4791

04: Water Sources OUR IMPORTED WATER SUPPLY & THE IMPACT ON WATER QUALITY

The San Pasqual Reservation purchases & imports some of our water supply from the Indian Water Authority, provided through the systems of the Metropolitan Water District of Southern California. Ultimately, our water is a blend of Colorado River Water and California State Project Water, which slightly changes throughout the year.

These sources wind through thousands of miles of unprotected watersheds that bypass heavily populated areas. Because of this, potential contaminants are increased and are therefore treated by the San Diego County Water Authority. The San Pasqual Water Department also regularly monitors the quality of all water to ensure quality drinking standards for the safety of our tribal residents.

U.S. Drought Monitor
California

June 6, 2023 (Released Thursday, Jun. 8, 2023) Valid B a.m. EDT

Drought Conditions (Percent Area) D0-D4 D1-D4 D0-D4 29.42 4.60 0.00 0.00 Carment 70.88 0.00 Last Week 286.427 4.00 70.00 0.00 D.DD 0.00 3 Months Ago 26.64 43.00 23.16 10.00 0.00 0.00 Start of breday Your 97.93 0.00 530.00 71.14 27.40 0.00 99.76 94.01 10.57 0.00 100.00 40.91 One Year Age 0:00 100.00 99.79 DT.48 59.01 11.09

Interestly

None

D2 Severe Drought

D3 Extreme Drought

D4 Exceptional Drought

The Drought Monitor Tockses on prost-scale conditions
Local conditions may very For more information on the
Drought Munitor, go to https://interestlem.com/en/est/About again

Author: Lindsay Johnson National Drought Mitigation Center



droughtmonitor.unl.edu

U.S. Drought Monitor California

June 14, 2022 (Released Thursday, Jun. 16, 2022) Valid 8 a.m. EDT

U.S. Drought Monitor

California

2

Intensity:

D0 Abnormally Dry
D1 Moderate Drought
D2 Severe Drought
D3 Extreme Drought
D4 Exceptional Drought

The Drought Monitor focuses on broad-acale conditions. Local conditions may very. For more information on the Drought Monitor, go to https://documentor.com/

Author:

Adam Hartman NOAA/NWS/NCEP/CPC

droughtmonitor.unl.edu

June 15, 2021 (Released Thursday, Jun. 17, 2021) Valid 8 a.m. EDT

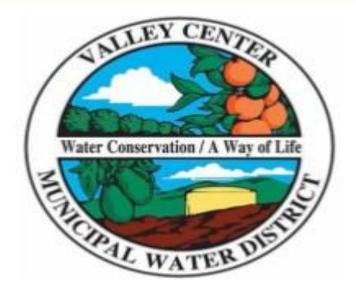
Intensity:

D0 Abnormally Dry
D1 Moderate Drought
D2 Severe Drought
D3 Extreme Drought
D4 Exceptional Drought

The Drought Monitor focuses on broad-scale conditions. Local conditions may vary. For more information on the Drought Monitor, go to https://droughtmonitor.unl.edu/About.aspx

Author:

Curtis Reganti National Drought Mitigation Center


05: Outsourced Water CCRs

Valley Center Municipal Water District http://www.vcmwd.org/Services/Water-and -Customer-Service/Water-Quality-Reports

San Diego County Water Authority https://www.sdcwa.org/water-quality

Metropolitan Water District of Southern California

http://www.mwdh2o.com/pdf_about_your_ water/2.3.1_annual_water_quality_report.pdf

06: See something in your water?

As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and can pick up substances resulting from the presence of animals or human activity. In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (EPA) prescribes regulations that filter or limit the amount of certain contaminants in water provided by public water systems. The Food & Drug Administration (FDA) also established regulations to limit contaminants in bottled water to provide protection for public health. The presence of contaminants does not necessarily indicate that water poses a health risk; more information about contaminants and potential health effects

can be found by calling the EPA's SAFE DRINKING HOTLINE:

+1(800)-426-4791

07: Our Treatment Process

The San Pasqual Water Department provides high quality drinking water through the utilization of our updated facilities and state-certified operators. Our water is treated at the Tribes treatment plant which undergoes several processes. Each process provides a barrier to supplement additional safety and quality improvements. The treatment employs a combination of time-tested conventional processes for multi-media filtration. This cost-effective, proven method of treatment is used throughout the modern world.

08: Water Quality Tables

The Following series of tables reflects contaminants found in our drinking water for this past calendar year. The

the presence of contaminants does not necessarily indicate that the water poses health risks.

The EPA/State requires monitoring less than once per year because the concentrations of these contaminants do not change frequently.

San Pasqual District A Annual Water Quality Report

Public Water System #090605017

2022

Contaminants	MRDLG	MRDL	Your Water	Ra Low	ige High	Sample Date	MRDL Exceeded	Typical Source
Disinfectants								
Chlorine Units: Chlorine residual, ppm	.4	4	0.2092	9.1	0.5	2022	No	Drinking water additive used fo disinfection
Contaminants	MCLG	MCL	Your Water	Rat Low		Sample Date	Violation	Typical Source
Disinfection By-Products								
Five Haloscetic Acids (HAAS) Linite: ppb	N/A	60	7.8	ND	7.8	2022	No	By-product of drinking water chlorination
Total Trhalomethanes (TTHMs) Units: ppb	NA	80	16.3	14.7	16.3	3022	No	By-product of drinking water chlorination
Contaminants	MCLG	MCL	Your Water	Rat Low	nge High	Sample Dute	Violation	Typical Source
Inorganic Contaminants								
Arsenie Units: ppb	.0	10	5.1	42	5.1	2022	No	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes
Sodium Units: ppm 12	N/A	NA	93	N/A	N/A	2022	No	Erosion of natural deposits; salt water intrusion

San Pasqual District A Annual Water Quality Report

Public Water System #090605017

2022

		Level	Water	Ran		Date	Exceeded	Typical Source
Lead and Copper Rule								
Copper Units: ppm - 90th Percentile	13	1.3	0.1005	005 0 sites over Action 2022 Level		No	Corrosion of household plumbing systems; crossion of natural deposits; leaching from wood preservatives	
Contaminants	MCLG	MCL	Your Water	Ran Low		Sample Date	Violation	Typical Source
Radiological Contaminant	ts							
Uninium (combined) Units: ppb	0	30	25	N/A	N/A	2022	No	Erosion of natural deposits
							7	
TON				4			4	
			3	V			7	
				1			1	
The state of the s		10	AL.		12	16 8		
	A ME	-	DAY ST	-			1	
	A ME							

San Pasqual District B Annual Water Quality Report

Public Water System #090605080

			20	22				
Contaminants	MRDLG	MRDL	Your Water	Ran Low	nge High	Sample Date	MRDL Exceeded	Typical Source
Disinfectants								
Chlorine Units: Chlorine residual, ppm	*	4	0.2417	1.0	0.8	2922	No.	Drinking water additive used for distribution
Contaminants	MCLG	MCL	Your Water	Rai Low	age High	Sample Date	Violation	Typical Source
Disinfection By-Products								
Five Haloscetic Acids (HAA5) Units: ppb	N/A	60	14.5	NA	NA.	3922	No	By-product of drinking water abhormation
Total Tribalomethanes (TTHMs) Units: ppb	SOX:	10	29.3	SVA	SA	2022	No.	By-product of drinking water abhormation
Contaminants	MCLG	Action Level	Your Water	Ra	ngr	Sample Date	A.L. Exceeded	Typical Source
Lead and Copper Rule								
Copper Units: ppm - 90th Percentile	13	1.3	0.065		er Action sel	2922	No	Corresion of household planthing systems, erosion of natural deposits; leaching from wood preservatives
	1	and the			- Constant		3	7
						2		
		C		-	温			
		- 19	3					
14	-100							

Duro Water System Annual Water Quality Report

Public Water System #090605168

2022

				.022						
Contaminants	MRDLG	MRDL	Your Water	Range Low High		Sample Date	MRDL Exceeded	Typical Source		
Disinfectants										
Chlorine Units: Chlorine residual, ppm	4	4	0.1583	0.1	0.3	2002	No	Drinking water additive used for disinfection		
Contaminants	MCLG	MCL	Your Water	Ras Low		Sample Date	Violation	Typical Source		
Inorganic Contaminants										
Barium Units: ppm	1	2	8.611	NA	NA	2022	No	Discharge of oil drilling wastes and from metal refineries, erosion of natural deposits		
Fluoride Units: ppm		4	0.24	NA	NA	2019	No	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factoris		
Nitrate [reported as Nitroges]	10	10	2.1	NA	N/A	2022	No	Runoff and leaching from fertilizer use: leaching from septic tasks, servage; erosion of natural deposits		
Sodium Units ppm	NA	NA	110	NA	NA	2021	No	Erosson of natural deposits; salt mater intrusion		
Contaminants	MCLG	MCL	Your Water	Range Low High		Sample Date	Violatio	Typical Source		
Radiological Contaminants										
Adjusted Alpha (Excl. Radon & U) Unin: pCi/L	0	15	4	2.505	4	2020	No	Erosion of natural deposits		
Uranium (combined) Units: ppb	0	30	6	ND	6	2020	No	Erosion of natural deposits		

09: Special Education Statements

Additional information for LEAD:

- *Lead in drinking water is primarily from materials associated with service lines and home plumbing.
- *If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children.
- *When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds-- 2 minutes before using it for cooking or drinking.

10: Microbiological Testing

We are required to test your drinking water regularly for signs of microbial contamination. Positive test results could lead to follow-up investigations and potentially the issuance of public health advisories. The table below summarizes the results of the test.

Microbiological Testing

Public Water System #090605017

Calendar Year	Sampling Requirements	Sampling Conducted	Total E.coli Positive		Assessments Conducted
2022	2 Samples due monthly	12 out of 12	0	0	0

Public Water System #090605080

Calendar Year	Sampling Requirements	Sampling Conducted (months)			Assessments Conducted
2022	1 Sample due monthly	12 out of 12	0	0	0

Public Water System #090605168

Calendar Year	Sampling Requirements	Sampling Conducted (menth)		Assessment Triggers	
2022	1 Sample due monthly	11 out of 12	0	0	0

11: Health Based Violations

The Table below lists the health-based violations the water system incurred during the last calendar year. While you should have received a notification, we are required to list them in this report.

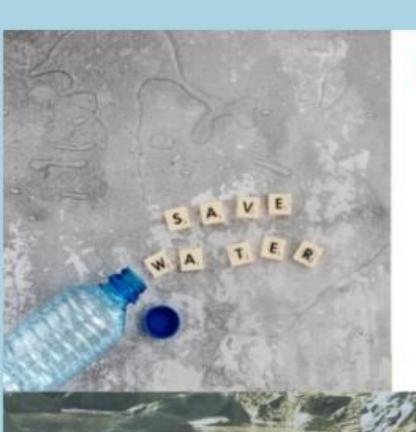
Health-Based Violations

Public Water System #090605017

Contaminant Name	Type of Violation	Begin/End Date	Steps Taken to Correct the Violation	Return to Compliance	Return Dute	Action Comment
Revised Total Coliform Rule (RTCR)	Failure to conduct routine monitoring	6/1/2022 - 6/30/2022	Following month reporting of all required results.	Yes	6/15/2022	Subsequent reporting of required results.
Dioxin (2,3,7,8- TCDD)	Major monitoring/reporting violation for routine chemical monitoring.		1/1/2020 - 12/31/20		ting mon s as requi	
Arsenic	Major monitoring/repor routine chemical monit		7/1/2022 - 9/30/20		ting mon	

Public Water System #090605168

Contaminant Name	Type of Violation	Begin/End Date	Steps Taken to Correct the Violation	Return to Compliance	Return Action Date Comment	
Revised Total Coliform Rule (RTCR)	Failure to conduct routine monitoring	6/1/2022 - 6/30/2022F	ollowing month reporting of all required results.	Yo	8/5/2022 Subsequent reporting of required results.	
Fluoride	Major monitoring/reporting violation for routine chemical monitoring.	1/1/2020 - 12/31/2022	Reporting monitoring results as required.	Yes	4/6/2023 Subsequent reporting of required	


12: How Do I Get Involved?

Please feel free to contact us with the information from the cover page if you wish to get involved or require this report in another language for your convenience.

13: Definitions

- Unit Definitions:
- ppm= Parts per million, or milligrams per liter (mg/L)
- ppb = parts per billion
- N/A =Not Applicable
- ND = not detectable at testing limit
- NR = monitoring not required, but recommended
- MCGL = Maximum Contaminant Level Goal: The highest level of contaminant in drinking water below which there is no known or expected risk to health. MCLG's allow for a margin of safety.
- MCL = Maximum Contaminant Level. Highest level allowed in drinking water by EPA. MCL's are set as close to the MCLG's as feasible using the best available treatment technology
- TT = Total Technique: A required process intended to reduce the level of a contaminant in drinking water.
- AL = Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
- Test Result Updates:

Public Water Systems A and B are monitored monthly for bacteriological contaminants. None of the samples tested positive for Total Coliform or Fecal Coliform. The tables provided list all the drinking water contaminants that were detected in the domestic water supply in 2017. No chemical contaminants exceeded EPA health-based criteria (MCLs).

OUTDOORS

- Cover your pool to reduce evaporation to save 250 gallons per week
- Adjust sprinklers and watering times to only water what is necessary. This can save up to 250 gallons per week.
- Never hose down your patio, balcony, and driveway- use a broom or blower to save 100 gallons per week
- Use Native Landscaping and drought- tolerant planting techniques

INDOORS

- Take 5- minute shower or less showers using a low-flow showerhead to save
 75 Gallons a week per person
- Turn off water while brushing your teeth or shaving to save 35 gallons a week per person
- Hand wash dishes once a day using the least amount of detergent as possible.
 Use a sprayer or short blasts of water to rinse. This will save 100 gallons per week
- Rinse vegetables and fruits in a sink or pan filled with water instead of running water to save 30 gallons a week

SAN PASQUAL DOMESTIC WATER AUTHORITY (SPDWA)

